| Worksheet 2.1 | | |--------------------------|--| | Review of strong bonding | | NAME: CLASS: #### **INTRODUCTION** This worksheet revises the bonding and structure of ionic, metallic and covalent molecular and network substances. . | No. | Question | Answer | Answer | | | | | |-----|---|--|--|--|--|--|--| | 1 | Classify the strong bonding typ between particles in each of the following substances as ionic, covalent or metallic. a Carbon dioxide b Iron(III) chloride c Silicon dioxide d Brass d Ammonia d Calcium oxide | · · · · · · · · · · · · · · · · · · · | | | | | | | 2 | Consider the following three substances. a Complete and label the diagram to show the particles present. b Name the bonding that holds the particles together. c Bonding is all substances is due to electrostatic attraction between particles. Identify the types of particles that attract one another. | | | | | | | | | Sodium | Sodium chloride | Chlorine, Cl ₂ | | | | | | | Bonding: Electrostatic attraction between | Bonding: Electrostatic attraction between | Bonding: Electrostatic attraction between | | | | | | Worksheet 2.1 | |
 | p 6 1 | |--------------------------|--|------|-------| | Review of strong bonding | | | | | 3 | exist be compout of elements? a Groups? b Groups | type of strong bonding will tween the atoms of the ands formed in the reaction ents from the following oup 2 and group 17 oup 13 and group 16 oup 16 and group 17 | | | | |---|--|---|--------------|---|---| | 4 | formula
could be | c compound has the Z ₃ X. Elements Z and X e found in which groups of odic table? | | | | | 5 | compou | n, from group 15, forms a and with an element X, oup 17. Give a likely of this compound. | | | | | 6 | formula
a period | um telluride has the ionic K_2 Te. Without consulting lic table, suggest the group lement tellurium. | | | | | 7 | represer
and the
to produ | lectron dot diagrams to
nt the transfer of electrons
number of atoms required
ace calcium phosphide
lcium and phosphorus. | | | | | 8 | | 3 | | | | | 9 | first par
second | ticle listed is larger than (>) particle. | , the same s | rmine whether the atomic/ionic size (=) or smaller than (<) the r | , | | | | First particle | >, =, < | Second particle | | | | a | Sulfur atom (S) | | Sulfide ion (S ²⁻) | | | | b | Hydrogen ion (H ⁺) | | Hydrogen atom (H) | | | | | Chloride ion (Cl ⁻) | | Fluoride ion (F ⁻) | | | | d | Magnesium atom (Mg) | | Aluminium atom (Al) | | | | | | | | | #### Page 2 ### **Worksheet 2.1: Solutions** # **Review of strong bonding** | No. | Answer | | | | | | |-----|---|--|--|--|--|--| | 1 | a Covalent b Ionic c Covalent d Metallic e Covalent f Ionic | | | | | | | 2 | Sodium a The diagram should show positive sodium ions, Na⁺ and a delocalised electron from every positive ion. b Metallic bonding c Electrostatic attraction between the positive sodium ions and the delocalised electrons Sodium chloride a The diagram should show alternating positive sodium ions, Na⁺ and negative chloride ions, Cl⁻ (the larger ion is Cl⁻). b ionic bonding c electrostatic attraction between the positive sodium ions and the negative chloride ions Chlorine a The diagram should show two chlorine atoms bonded together for each molecule. b Covalent bonding between the atoms in the molecule and weak bonding between the molecules c Electrostatic attraction between the shared electrons and the positive nuclei of the two atoms (also weak electrostatic attraction between the neutral molecules that act as instantaneous dipoles (see Chapter 4)) | | | | | | | 3 | a Ionic bonding b Ionic bonding c Covalent bonding | | | | | | | 4 | The compound consists of Z^+ and X^{3-} ions so element Z is in group 1 and element X in group 15. | | | | | | | 5 | N will react by gaining 3 electrons and X by gaining 1 electron, so the formula will be NX ₃ | | | | | | | 6 | The telluride ion must be Te ²⁻ , so tellurium is from group 16. | | | | | | | 7 | $3 \text{Ca} + 2 \text{P} \longrightarrow \left[\text{Ca} \right]_{3}^{2+} \left[\begin{array}{c} \bullet \bullet \\ \bullet P \\ \end{array} \right]_{2}^{3-}$ | | | | | | | 8 | a H N H b O C O O C O | | | | | | ### **Worksheet 2.1: Solutions** # **Review of strong bonding** | | - | | | | | | |---|---|---------------------------------|---------|--------------------------------|----|--| | 9 | Anions are larger than their parent atoms (due to increased electron repulsions), while cations are smaller than their parent atoms (due to a reduction in the number of occupied | | | | | | | | electron shells). Atomic radius decreases across a period in the periodic table. Atom/ion increases as the number of occupied electron shells increases. | | | | | | | | No. | First particle | >, =, < | Second particle | | | | | a | Sulfur atom (S) | < | Sulfide ion (S ²⁻) | 7 | | | | b | Hydrogen ion (H ⁺) | < | Hydrogen atom (H) | 1 | | | | c | Chloride ion (Cl ⁻) | > | Fluoride ion (F ⁻) | = | | | | д | Magnesium atom (Mg) | > | Aluminium atom (A1) | -1 | |