Worksheet 2.1	
Review of strong bonding	

NAME: CLASS:

INTRODUCTION

This worksheet revises the bonding and structure of ionic, metallic and covalent molecular and network substances. .

No.	Question	Answer	Answer				
1	Classify the strong bonding typ between particles in each of the following substances as ionic, covalent or metallic. a Carbon dioxide b Iron(III) chloride c Silicon dioxide d Brass d Ammonia d Calcium oxide	· · · · · · · · · · · · · · · · · · ·					
2	 Consider the following three substances. a Complete and label the diagram to show the particles present. b Name the bonding that holds the particles together. c Bonding is all substances is due to electrostatic attraction between particles. Identify the types of particles that attract one another. 						
	Sodium	Sodium chloride	Chlorine, Cl ₂				
	Bonding: Electrostatic attraction between	Bonding: Electrostatic attraction between	Bonding: Electrostatic attraction between				

Worksheet 2.1		 	p 6 1
Review of strong bonding			

3	exist be compout of elements? a Groups? b Groups	type of strong bonding will tween the atoms of the ands formed in the reaction ents from the following oup 2 and group 17 oup 13 and group 16 oup 16 and group 17			
4	formula could be	c compound has the Z ₃ X. Elements Z and X e found in which groups of odic table?			
5	compou	n, from group 15, forms a and with an element X, oup 17. Give a likely of this compound.			
6	formula a period	um telluride has the ionic K_2 Te. Without consulting lic table, suggest the group lement tellurium.			
7	represer and the to produ	lectron dot diagrams to nt the transfer of electrons number of atoms required ace calcium phosphide lcium and phosphorus.			
8		3			
9	first par second	ticle listed is larger than (>) particle.	, the same s	rmine whether the atomic/ionic size (=) or smaller than (<) the r	,
		First particle	>, =, <	Second particle	
	a	Sulfur atom (S)		Sulfide ion (S ²⁻)	
	b	Hydrogen ion (H ⁺)		Hydrogen atom (H)	
		Chloride ion (Cl ⁻)		Fluoride ion (F ⁻)	
	d	Magnesium atom (Mg)		Aluminium atom (Al)	

Page 2

Worksheet 2.1: Solutions

Review of strong bonding

No.	Answer					
1	 a Covalent b Ionic c Covalent d Metallic e Covalent f Ionic 					
2	 Sodium a The diagram should show positive sodium ions, Na⁺ and a delocalised electron from every positive ion. b Metallic bonding c Electrostatic attraction between the positive sodium ions and the delocalised electrons Sodium chloride a The diagram should show alternating positive sodium ions, Na⁺ and negative chloride ions, Cl⁻ (the larger ion is Cl⁻). b ionic bonding c electrostatic attraction between the positive sodium ions and the negative chloride ions Chlorine a The diagram should show two chlorine atoms bonded together for each molecule. b Covalent bonding between the atoms in the molecule and weak bonding between the molecules c Electrostatic attraction between the shared electrons and the positive nuclei of the two atoms (also weak electrostatic attraction between the neutral molecules that act as instantaneous dipoles (see Chapter 4)) 					
3	 a Ionic bonding b Ionic bonding c Covalent bonding 					
4	The compound consists of Z^+ and X^{3-} ions so element Z is in group 1 and element X in group 15.					
5	N will react by gaining 3 electrons and X by gaining 1 electron, so the formula will be NX ₃					
6	The telluride ion must be Te ²⁻ , so tellurium is from group 16.					
7	$3 \text{Ca} + 2 \text{P} \longrightarrow \left[\text{Ca} \right]_{3}^{2+} \left[\begin{array}{c} \bullet \bullet \\ \bullet P \\ \end{array} \right]_{2}^{3-}$					
8	a H N H b O C O O C O					

Worksheet 2.1: Solutions

Review of strong bonding

	-					
9	Anions are larger than their parent atoms (due to increased electron repulsions), while cations are smaller than their parent atoms (due to a reduction in the number of occupied					
	electron shells). Atomic radius decreases across a period in the periodic table. Atom/ion increases as the number of occupied electron shells increases.					
	No.	First particle	>, =, <	Second particle		
	a	Sulfur atom (S)	<	Sulfide ion (S ²⁻)	7	
	b	Hydrogen ion (H ⁺)	<	Hydrogen atom (H)	1	
	c	Chloride ion (Cl ⁻)	>	Fluoride ion (F ⁻)	=	
	д	Magnesium atom (Mg)	>	Aluminium atom (A1)	-1	